Innovation Spurred Evidence from South Korea's Big R&D Push

Luis F. Jaramillo (University of Maryland, JMP) Chan Kim (University of Maryland)

> Columbia University New Thinking in Industrial Policy Conference November 1, 2024

- How does innovation policy affect research output and economic outcomes?
 - Scarce literature on large, coordinated R&D programs

- How does innovation policy affect research output and economic outcomes?
 - Scarce literature on large, coordinated R&D programs
- We study the G7 Program, Korea's first "mission-oriented" R&D program

- How does innovation policy affect research output and economic outcomes?
 - Scarce literature on large, coordinated R&D programs
- We study the G7 Program, Korea's first "mission-oriented" R&D program
 - +7 bn USD between 1992 and 2001 (2023 USD), ~100.000 researchers (Kwon, 2021)
 - The Mission: Reach frontier-level (G7-country) capabilities in selected technologies by the 2000s

- How does innovation policy affect research output and economic outcomes?
 - Scarce literature on large, coordinated R&D programs
- We study the G7 Program, Korea's first "mission-oriented" R&D program
 - +7 bn USD between 1992 and 2001 (2023 USD), ~100.000 researchers (Kwon, 2021)
 - The Mission: Reach frontier-level (G7-country) capabilities in selected technologies by the 2000s
 - Policymakers identified the need to compete in higher value-added markets. However...
 - Coordination failures and risk-averse firms in technologies with commercial applications (e.g. HDTV)
 - Suboptimal private provision of R&D in technologies with large externalities (e.g. Nuclear Reactor)

- How does innovation policy affect research output and economic outcomes?
 - Scarce literature on large, coordinated R&D programs
- We study the G7 Program, Korea's first "mission-oriented" R&D program
 - +7 bn USD between 1992 and 2001 (2023 USD), ~100.000 researchers (Kwon, 2021)
 - The Mission: Reach frontier-level (G7-country) capabilities in selected technologies by the 2000s
 - Policymakers identified the need to compete in higher value-added markets. However...
 - Coordination failures and risk-averse firms in technologies with commercial applications (e.g. HDTV)
 - Suboptimal private provision of R&D in technologies with large externalities (e.g. Nuclear Reactor)
 - A research subsidy would solve these issues. What's different?
 - Top-down, centralized approach to project selection
 - A public research institute managed the projects

- How does innovation policy affect research output and economic outcomes?
 - Scarce literature on large, coordinated R&D programs
- We study the G7 Program, Korea's first "mission-oriented" R&D program
 - +7 bn USD between 1992 and 2001 (2023 USD), ~100.000 researchers (Kwon, 2021)
 - The Mission: Reach frontier-level (G7-country) capabilities in selected technologies by the 2000s
 - Policymakers identified the need to compete in higher value-added markets. However...
 - Coordination failures and risk-averse firms in technologies with commercial applications (e.g. HDTV)
 - Suboptimal private provision of R&D in technologies with large externalities (e.g. Nuclear Reactor)
 - A research subsidy would solve these issues. What's different?
 - Top-down, centralized approach to project selection
 - A public research institute managed the projects
 - G7P Unit selected 23 megaprojects from 74 candidates presented by Ministries
 - Only 18 projects were funded due a budget shock

The G7 Program

Selected and Funded Megaprojects (Treatment)		Selected but Unfunded Megaprojects (Control)				
Product Technologies	Base Technologies	Product Technologies	Base Technologies			
HDTV	NG Biomaterials	Aircraft	Off-Shore Manufacturing Plant			
High-Capacity Semiconductor	NG Energy and Informatic Materials	High-Speed Maritime Ship	Korean Natural Language Processing System			
Electric Vehicle	NG Semiconductor		Automated Traffic Control System			
NG Flat Panel Display	Environmental Engineering					
B-ISDN Network Device	Fuel Cell					
Medicines	NG Nuclear Reactor					
Medical Engineering	NG Production System					
Precision Machinery	Sensorial Engineering					
High-Speed Train	NG Nuclear Fusion Device					

• We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes
- We exploit that some high-potential megaprojects were selected but not funded due to budget shocks

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes
- We exploit that some high-potential megaprojects were selected but not funded due to budget shocks

Main findings

- By the 10th year after receiving program support, targeted technological classes doubled their quality-weighed patenting output and tripled their real exports relative to control classes
- The effect on patenting output materialized almost immediately. It took more time for exports (~5 years)
- Technological classes with *less* concentrated scientific output before the program observe *greater* effects

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes
- We exploit that some high-potential megaprojects were selected but not funded due to budget shocks

Main findings

- By the 10th year after receiving program support, targeted technological classes doubled their quality-weighed patenting output and tripled their real exports relative to control classes
- The effect on patenting output materialized almost immediately. It took more time for exports (~5 years)
- Technological classes with *less* concentrated scientific output before the program observe *greater* effects
- We compute an IRR of ~ 21% and a Cost-Benefit ratio of 3.3

- We use newly digitized files from archival sources, patenting, and export data to study how patenting and exports in G7P-targeted technological classes evolved between 1980 and 2015
- We use a language model and rich textual data to determine targeted and control classes
- We exploit that some high-potential megaprojects were selected but not funded due to budget shocks

Main findings

- By the 10th year after receiving program support, targeted technological classes doubled their quality-weighed patenting output and tripled their real exports relative to control classes
- The effect on patenting output materialized almost immediately. It took more time for exports (~5 years)
- Technological classes with *less* concentrated scientific output before the program observe *greater* effects
- We compute an IRR of ~ 21% and a Cost-Benefit ratio of 3.3
- The G7P shifted the direction in which the Korean economy innovated, with important economic consequences

Data

• Outcomes

- (Future-citation-weighed) Patenting and exports at the country-technological class level between 1980 and 2015 from USPTO and UN COMTRADE
- An example of a technological class:
 - 1 digit: **B Performing operations, transporting**
 - 3 digit: B62 Land vehicles for travelling otherwise than on rail
 - 4 digit: **B62D Motor vehicles**

Data

• Outcomes

- (Future-citation-weighed) Patenting and exports at the country-technological class level between 1980 and 2015 from USPTO and UN COMTRADE
- An example of a technological class:
 - 1 digit: **B Performing operations, transporting**
 - 3 digit: B62 Land vehicles for travelling otherwise than on rail
 - 4 digit: **B62D Motor vehicles**

• Treatment

- Wealth of textual information (description, goals, etc.) for +4,800 G7P-related R&D projects
 - We obtained the files from Korea's National Research Foundation through a FOIA-like request
 - We do not observe the technological classes targeted by each research project
- **Challenge:** How do we map the rich textual information into technological classes?

Data

• Outcomes

- (Future-citation-weighed) Patenting and exports at the country-technological class level between 1980 and 2015 from USPTO and UN COMTRADE
- An example of a technological class:
 - 1 digit: **B Performing operations, transporting**
 - 3 digit: B62 Land vehicles for travelling otherwise than on rail
 - 4 digit: **B62D Motor vehicles**

• Treatment

- Wealth of textual information (description, goals, etc.) for +4,800 G7P-related R&D projects
 - We obtained the files from Korea's National Research Foundation through a FOIA-like request
 - We do not observe the technological classes targeted by each research project
- **Challenge:** How do we map the rich textual information into technological classes?
- Solution: A language model to classify projects into technological classes
 - We input each project's goals and description of activities in a language model developed to classify patents based on descriptive information
 - We get in return the technological classes related to each project

사업구분								-	선도기술개발사업
ahke	B H H	연구기관 (책임자)	황여기업	영구기관	'95 연구개발비(단위:천원)		천원)	최종목표	연구UI8
					包车	21 23	х	1.	
95-G-02-01-A	교환기술분야개발	전자동신연구소 (임주환)	한화정보통신 동아전기 삼성전자(주) 대우통신(주) 우진전자통신 (주) (G정보통신 (주)	`92 ~ `97 (`95/01/01 ~`95/12/31)	32,868,000	44,237,000	77,105,000		
95-G-02-01 x-01	ATM 교환기 시스템 개 발	전자동신연구소 (참치문)	한화정보통신 동아전기 상성전자(주) 대우통신(주) 우진전자동신 (주) LG정보통신 (주)	'92 '97 ('95/01/01 '95/12/31)	27,520.000	38,669,000	66,189,000	정보화 사회의 구축에 핵 심적인 광대역 ATM기 숲,광교환기술 등 차세 대 교환기술개발	○소형 ATM 교원가 정말 완란 ○중형 ATM 교환기 구조 잡기
95-G-02-01-A-01-A	ATM 교환기에서의 과 부하제어에 관한 연구	한남대학교 (최진군)			-		15,000		
95-G-02-01-A-01- AA	운용에시지의 음성화에 관한 연구	과학기술원 (오영환)					15,000	11 m 11	
95-G-02-01-A-01- AB	ATM 교환기의 내진동 설계 및 해석에 관한연 구	과학기술원 (업윤용)					25,000	1	

-59-

Empirical Strategy

- We exploit that 5 high-potential mega-projects were selected but not funded to address selection concerns
 - Selected by program experts but not funded due to a budget shock
 - Deemed support-worthy but they would need to be supported outside the G7P
 - The Korean Government (unsuccessfully) explored alternative mechanisms to support them

Empirical Strategy

- We exploit that 5 high-potential mega-projects were selected but not funded to address selection concerns
 - Selected by program experts but not funded due to a budget shock
 - Deemed support-worthy but they would need to be supported outside the G7P
 - The Korean Government (unsuccessfully) explored alternative mechanisms to support them
- We find evidence that supports our identification strategy
 - No pre-trends in patenting or exports
 - Targeting is not informative of underlying economic characteristics before receiving program support
 - Results do not change when we exclude "super-star" technological classes (+95th percentile on outcomes before the G7P) from the sample

Empirical Strategy

- We exploit that 5 high-potential mega-projects were selected but not funded to address selection concerns
 - Selected by program experts but not funded due to a budget shock
 - Deemed support-worthy but they would need to be supported outside the G7P
 - The Korean Government (unsuccessfully) explored alternative mechanisms to support them
- We find evidence that supports our identification strategy
 - No pre-trends in patenting or exports
 - Targeting is not informative of underlying economic characteristics before receiving program support
 - Results do not change when we exclude "super-star" technological classes (+95th percentile on outcomes before the G7P) from the sample
- We provide evidence within Korea and across countries

Outcomes and Treatment

• We define

$$\Delta ihs(patents)_{s,g+h} = ihs(patents)_{s,g+h} - ihs(patents)_{s,g-1}$$
$$\Delta G7P_{s,g+h} = G7P_{s,g+h} - G7P_{s,g-1}$$

- s is an IPC 4-digit level technological class
- g is the year in which a technological class is targeted
- *ihs*(*patents*)_{s,g+h} is the (ihs) of future-citation-weighed patents of a technological class s, h years after G7P-targeting
- $G7P_{s,q+h}$ is G7P treatment status for class s, h years after targeting

Outcomes and Treatment

• We define

$$\Delta ihs(exports)_{c,g+h} = ihs(exports)_{c,g+h} - ihs(exports)_{c,g-1}$$
$$\Delta G7P_{c,g+h} = G7P_{c,g+h} - G7P_{c,g-1}$$

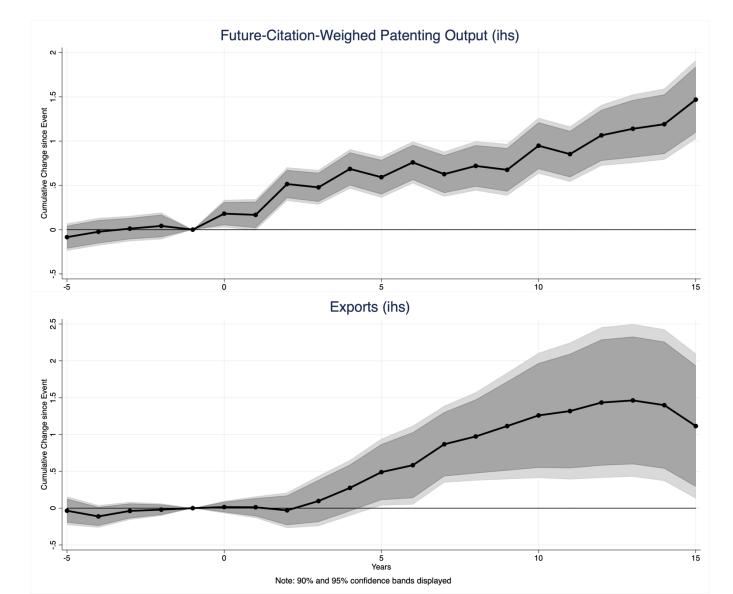
- c is an IPC 3-digit level technological class
- g is the year in which a technological class is targeted
- $ihs(exports)_{c,g+h}$ is the (ihs) of exports of a technological class c, h years after G7P-targeting
- $G7P_{c,g+h}$ is G7P treatment status for class c, h years after targeting

Patenting

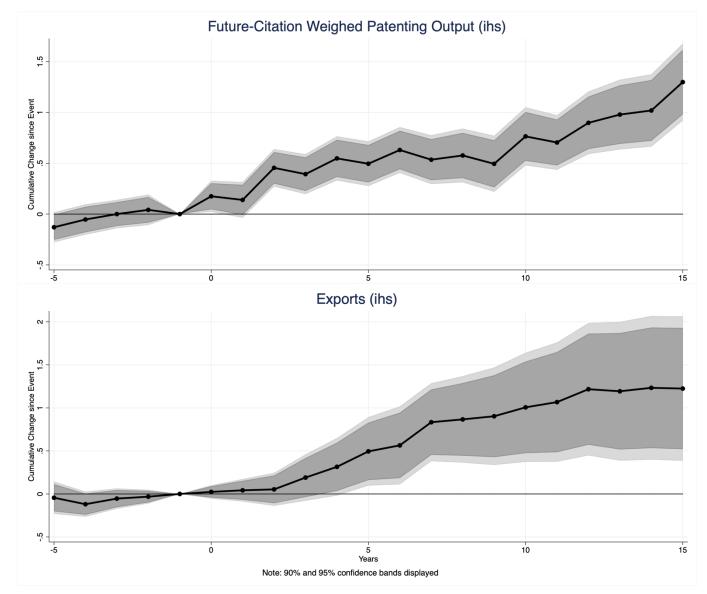
• We use Local Projections Differences in Differences (LP-DiD, Dube et al., 2023) to estimate:

$$\Delta ihs(patents)_{s,g+h} = \alpha + \beta_{g+h} \Delta G7P_{s,g+h} + \delta_{c,t} + \sum_{j=1987}^{2015} X_s \gamma_j + \varepsilon_{s,g+h}$$

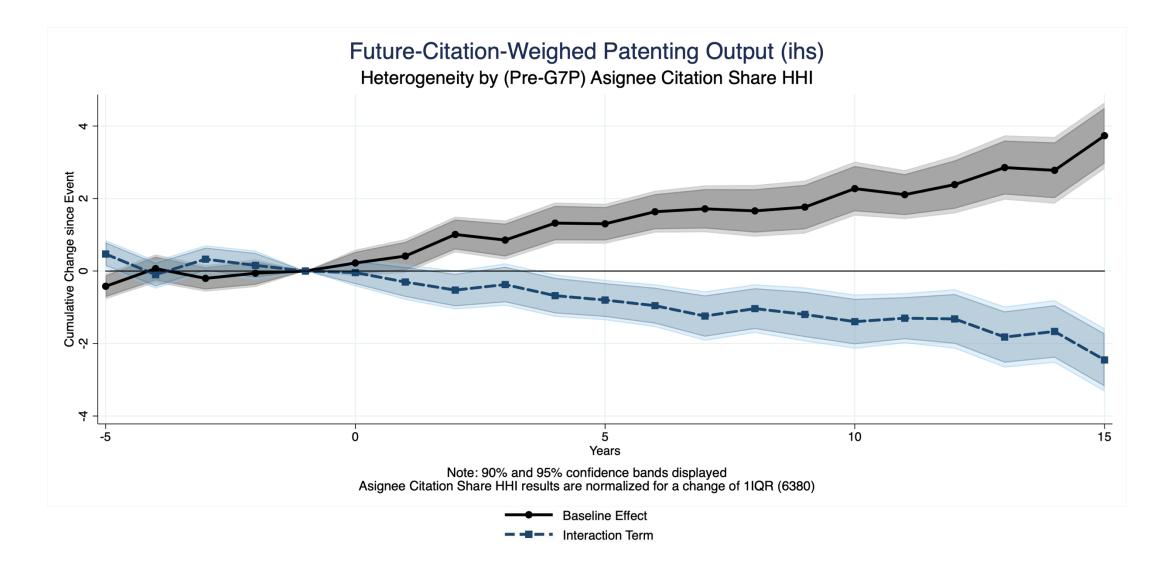
- *ihs*(*patents*)_{s,g+h} is the (ihs) of future-citation-weighed patents in technological class s, h years after G7P-targeting
- $G7P_{s,q+h}$ is G7P treatment status for class s, h years after targeting
- $\delta_{c,t}$ is a calendar year-IPC 3-digit level class c fixed effect
- X_s is technological class's share of patenting output between 1987 and 1991, γ_j is a calendar-year dummy
- Using LP implies estimating the specification for each year separately and keeping only "newly treated" technological classes ($\Delta G7P_{s,g+h} = 1$) or clean controls ($G7P_{s,g+h} = 0$)


Exports

• We use Local Projections Differences in Differences (LP-DiD, Dube et al., 2023) to estimate:


 $\Delta ihs(exports)_{c,g+h} = \alpha + \beta_{g+h} \Delta G7P_{c,g+h} + \delta_{d,t} + \sum_{j=1987}^{2015} X_c \gamma_j + \varepsilon_{c,g+h}$

- $ihs(exports)_{c,g+h}$ is the (ihs) of exports in technological class c, h years after G7P-targeting
- $G7P_{c,q+h}$ is G7P treatment status for class c, h years after targeting
- $\delta_{d,t}$ is a calendar year-IPC 1-digit level class d fixed effect
- X_c is technological class' c share of exports output between 1987 and 1991, γ_j is a calendar-year dummy
- Using LP implies estimating the specification for each year separately and keeping only "newly treated" technological classes ($\Delta G7P_{c,g+h} = 1$) or clean controls ($G7P_{c,g+h} = 0$)


Results – South Korean Sample

Results – Cross-Country Sample

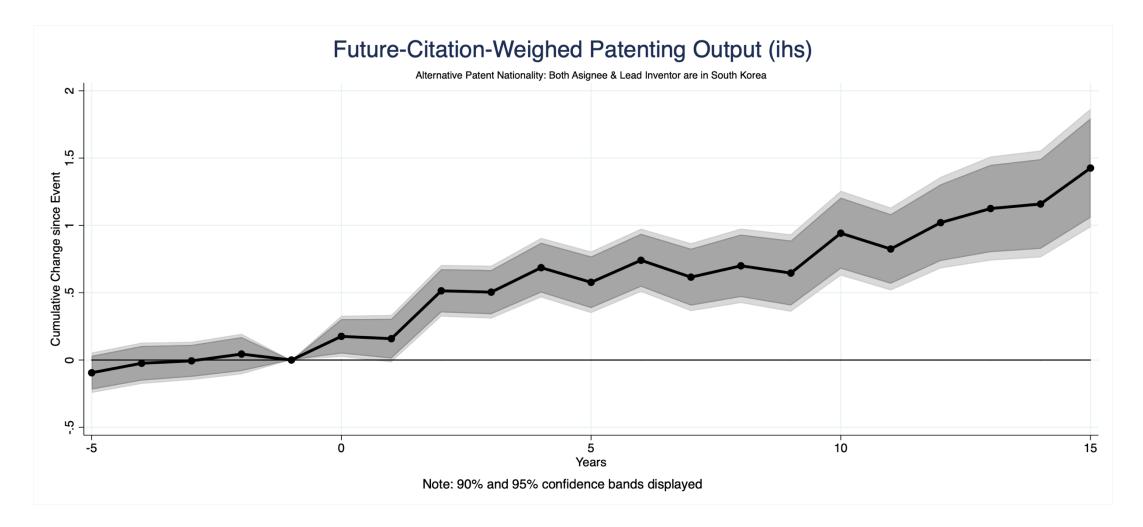
Mechanisms

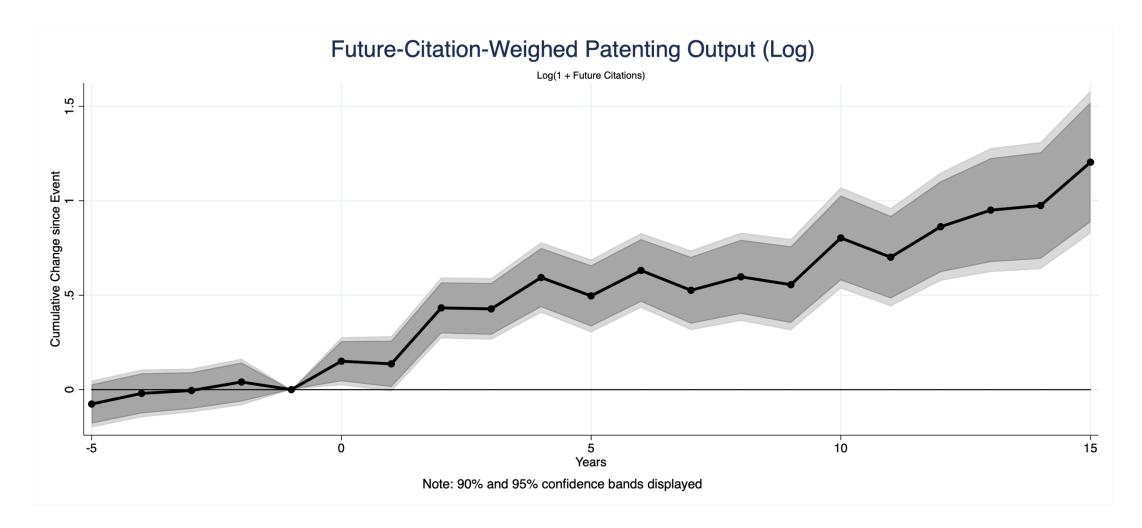
• Was the G7P a cost-effective intervention?

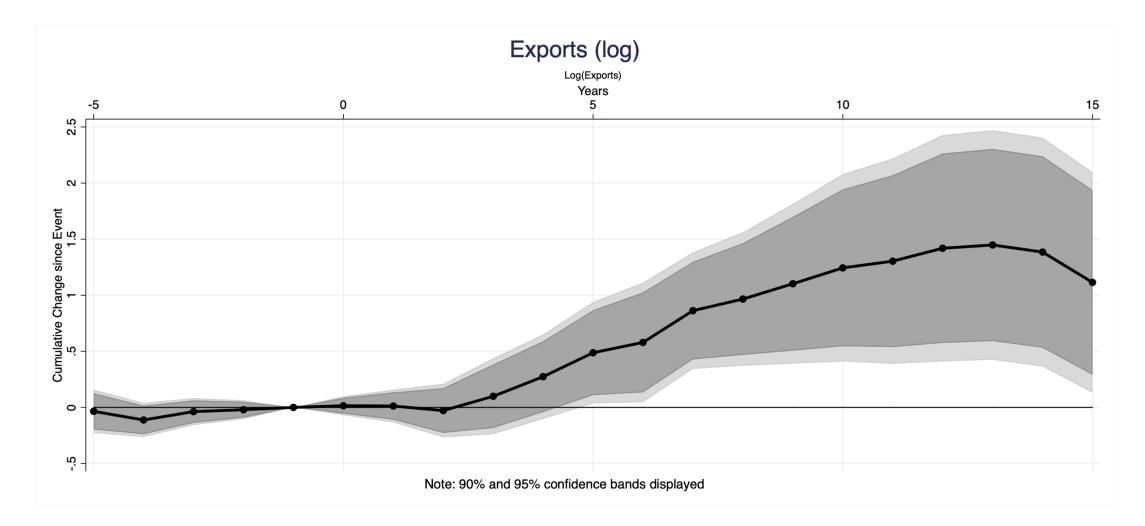
- Was the G7P a cost-effective intervention?
- Benefits
 - We count benefits for 15 years after a technological class was targeted
 - We implement a method to value patents from stock-market reactions to USPTO patent-granting (Kogan, 2017) and combine it with our reduced-form estimates
 - **Step 1:** Get the number of G7P-attributable patents for each treated technological class
 - Step 2: Get a Korean Won valuation for USPTO-granted Korean patents
 - We infer the value of a patent from changes in an assignee's market capitalization the three days after USPTO grants a patent, adjusting for market benchmark returns
 - We compute the median of patent valuations for each treated technological class every year
 - **Step 3:** Get a Korean Won valuation for G7P-attributable patents
 - We multiply the results from **Step 1** by those from **Step 2**

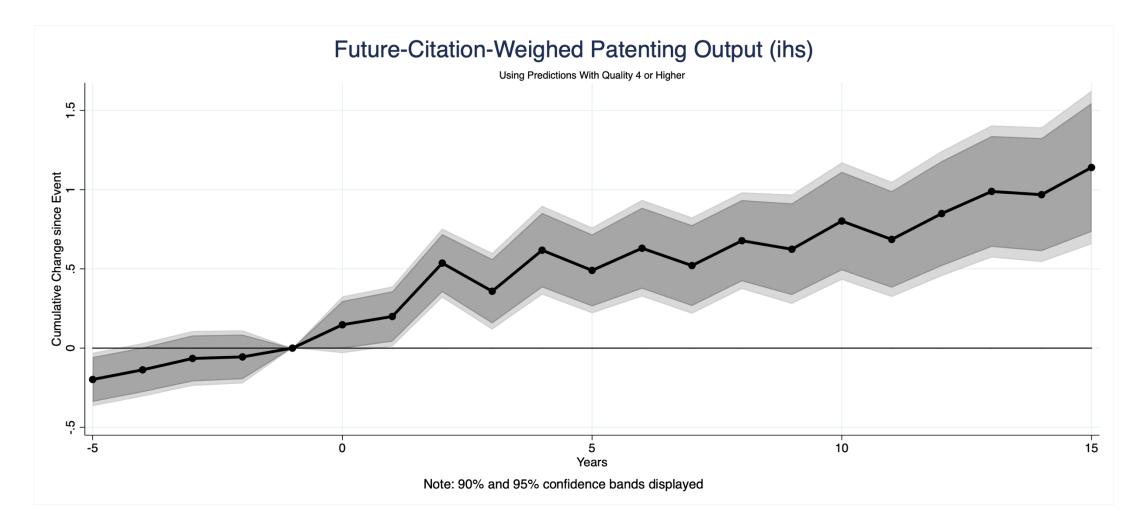
- Was the G7P a cost-effective intervention?
- Benefits
 - We count benefits for 15 years after a technological class was targeted
 - We implement a method to value patents from stock-market reactions to USPTO patent-granting (Kogan, 2017) and combine it with our reduced-form estimates
 - **Step 1:** Get the number of G7P-attributable patents for each treated technological class
 - Step 2: Get a Korean Won valuation for USPTO-granted Korean patents
 - We infer the value of a patent from changes in an assignee's market capitalization the three days after USPTO grants a patent, adjusting for market benchmark returns
 - We compute the median of patent valuations for each treated technological class every year
 - **Step 3:** Get a Korean Won valuation for G7P-attributable patents
 - We multiply the results from **Step 1** by those from **Step 2**
- Costs
 - We include R&D expenditures and opportunity costs
- We take all values to 1992 Korean Won and discount them using a 5% discount rate

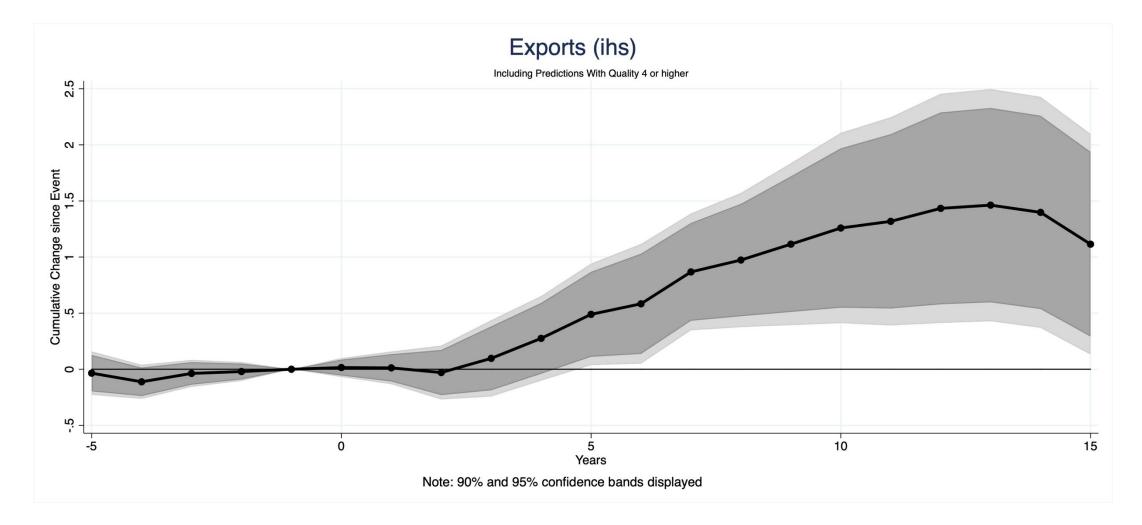
- Was the G7P a cost-effective intervention?
- Benefits
 - We count benefits for 15 years after a technological class was targeted
 - We implement a method to value patents from stock-market reactions to USPTO patent-granting (Kogan, 2017) and combine it with our reduced-form estimates
 - **Step 1:** Get the number of G7P-attributable patents for each treated technological class
 - Step 2: Get a Korean Won valuation for USPTO-granted Korean patents
 - We infer the value of a patent from changes in an assignee's market capitalization the three days after USPTO grants a patent, adjusting for market benchmark returns
 - We compute the median of patent valuations for each treated technological class every year
 - **Step 3:** Get a Korean Won valuation for G7P-attributable patents
 - We multiply the results from **Step 1** by those from **Step 2**
- Costs
 - We include R&D expenditures and opportunity costs
- We take all values to 1992 Korean Won and discount them using a 5% discount rate
- Results
 - Benefits ~ 3.3x costs
 - IRR = 20.9%


- Was the G7P a cost-effective intervention?
- Benefits
 - We count benefits for 15 years after a technological class was targeted
 - We implement a method to value patents from stock-market reactions to USPTO patent-granting (Kogan, 2017) and combine it with our reduced-form estimates
 - **Step 1:** Get the number of G7P-attributable patents for each treated technological class
 - Step 2: Get a Korean Won valuation for USPTO-granted Korean patents
 - We infer the value of a patent from changes in an assignee's market capitalization the three days after USPTO grants a patent, adjusting for market benchmark returns
 - We compute the median of patent valuations for each treated technological class every year
 - **Step 3:** Get a Korean Won valuation for G7P-attributable patents
 - We multiply the results from **Step 1** by those from **Step 2**
- Costs
 - We include R&D expenditures and opportunity costs
- We take all values to 1992 Korean Won and discount them using a 5% discount rate
- Results
 - Benefits ~ 3.3x costs
 - IRR = 20.9%
- The program was a (highly) cost-effective intervention


Conclusion


- The G7P shifted the direction in which the Korean economy innovated
 - Large, persistent impact on quality-weighed patenting output for targeted technological classes
 - Almost immediate effects
 - Larger effects in technological classes with *less* concentrated scientific production
- This shift had a relevant impact on the real economy
 - Large, long-lasting impact on exports for targeted technological classes
 - Effects took some time to materialize
- Highly cost-effective intervention
 - Benefits ~ 3.3x costs
 - ~ 21% IRR


감사합니다!


(Thank you!)

